Home
Class 12
MATHS
Let f:(0,oo)->R be a function defined ...

Let `f:(0,oo)->R ` be a function defined as `f(lambda)=int_0^(2pi)(sinx)/(x+lambda)dx`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A={x: 0 le x lt pi//2} and f:R to A be an onto function given by f(x)=tan^(-1)(x^(2)+x+lambda) , where lambda is a constant. Then,

Let A={x: 0 le x lt pi//2} and f:R to A be an onto function given by f(x)=tan^(-1)(x^(2)+x+lambda) , where lambda is a constant. Then,

f(x) satisfies the relation f(x)-lambdaint_0^(pi//2)sinx*costf(t)dt=sinx If lambda > 2 then f(x) decreases in

f(x) satisfies the relation f(x)-lambdaint_0^(pi//2)sinx*costf(t)dt=sinx If lambda > 2 then f(x) decreases in

f(x) satisfies the relation f(x)-lambdaint_0^(pi//2)sinx*costf(t)dt=sinx If lambda > 2 then f(x) increases in

f(x) satisfies the relation f(x)-lambdaint_0^(pi//2)sinx*costf(t)dt=sinx If lambda > 2 then f(x) decreases in

f(x) satisfies the relation f(x)-lambdaint_0^(pi//2)sinx*costf(t)dt=sinx If lambda > 2 then f(x) decreases in

Let a function f:(2,oo)rarr[0,oo)"defined as " f(x) = (|x-3|)/(|x-2|), then f is

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then