Home
Class 12
MATHS
Let O(O being the origin) be n interior ...

Let O(O being the origin) be n interior point of `DeltaABC` such that `vecOA + 2 vecOB + 3 vec OC = 0`. If `Delta, Delta_1,Delta_2 and Delta_3` are area of `DeltaABC ,DeltaOAB,DeltaOBC,DeltaOCA` respectively then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let O be an interior point of Delta ABC such that 2vec OA+5vec OB+10vec OC=vec 0

Let O be an interior point of triangle ABC, such that 2vec(OA)+3vec(OB)+4vec(OC)=0 , then the ratio of the area of DeltaABC to the area of DeltaAOC is

Let O be an interior point of triangle ABC, such that 2vec(OA)+3vec(OB)+4vec(OC)=0 , then the ratio of the area of DeltaABC to the area of DeltaAOC is

Let O be an interior point of DeltaABC such that bar(OA)+2bar(OB) + 3bar(OC) = 0 . Then the ratio of a DeltaABC to area of DeltaAOC is

Let O be an interior point of DeltaABC such that bar(OA)+2bar(OB) + 3bar(OC) = 0 . Then the ratio of a DeltaABC to area of DeltaAOC is

Let O be an interior point of DeltaABC such that bar(OA)+2bar(OB) + 3bar(OC) = 0 . Then the ratio of a DeltaABC to area of DeltaAOC is

Let O be an interior point of DeltaABC such that bar(OA)+2bar(OB) + 3bar(OC) = 0. Then the ratio of a DeltaABC to area of DeltaAOC is

Let O be an interior points of triangleABC such that vec(OA)+2vec(OB)+3vec(OC)=vec0 , then the ratio of triangleABC to area of triangleAOC is

Let O be any point in the interior of DeltaABC , prove that : AB+BC+CA lt 2 (OA+OB+OC)