Home
Class 12
MATHS
The general solution of a differential ...

The general solution of a differential equation of the type `(dx)/(dy)+P_1x=Q_1`is(A) `y e^(intP_1dy)=int(Q_1e^(intP_1dy))dy+C` (B) `ydote^(intP_1dx)=int(Q_1e^(intP_1dx))dx+C`(C) `x e^(intP_1dy)=int(Q_1e^(intP_1dy))dy+C` (D) `xe^(intp_1dx)=intQ_1e^(intp_1dx)dx +C`

Promotional Banner

Similar Questions

Explore conceptually related problems

The general solution of a differential equation of the type (dx)/(dy)+P_(1)x=Q_(1) is (A)ye^(int P_(1)dy)=int(Q_(1)e^(int P_(1)dy))dy+C(B)ydot e^(int P_(1)dx)=int(Q_(1)e^(int P_(1)dx))dx+C(C)xe^(int P_(1)dx)=int(Q_(1)e^(int P_(1)dx))dy+C(D)xe^(int p_(1)dx)=int Q_(1)e^(int p_(1)dx)dx+C

Choose the correct answer. The general solution of a differential equation of the type (dx)/(dy) + P_1 x = Q_1 is a) y e^(int P_1 dy) = int (Q_1 e^(int P_1 dy))dy + c b) y e^(int P_1 dx) = int (Q_1 e^(int P_1 dx))dy + c c) x e^(int P_1 dy) = int (Q_1 e^(int P_1 dy))dy + c d) x e^(int P_1 dx) = int (Q_1 e^(int P_1 dx))dx + c

The general solution of the differential equation (e^(x)+1)y dy = (y+1)e^(x) dx is

The solution of the differential equation (dy)/(dx)+1=e^(x+y) , is

The solution of the differential equation (dy)/(dx)=e^(x-y)+1 is -

The solution of the differential equation (dy)/(dx)=e^(x-y)+1 is

The solution of the differential equation (dy)/(dx)-e^(x-y)=1 is

The solution of the differential equation : (dy)/(dx)=e^(x)+1 is :