Home
Class 11
MATHS
The straight line xcos theta+y sin theta...

The straight line `xcos theta+y sin theta=2` will touch the circle `x^2+y^2 -2=0` if

Text Solution

Verified by Experts

`xcostheta+ysintheta-2=0`
`|costheta+0*sintheta-2|/sqrt(cos^2theta+sin^2theta)=1`
`|costheta-2|=1`
`2-costheta=1`
`costheta=1`
`theta=2pin,n inI`.
option c is correct
Promotional Banner

Similar Questions

Explore conceptually related problems

The straight line x cos theta+y sin theta=2 will touch the circle x^(2)+y^(2)-2x=0, if

The straight line x cos theta+y sin theta=2 will touch the circle x^(2)+y^(2)-2x=0 if theta=n pi,n in IQ(b)A=(2n+1)pi,n in Itheta=2n pi,n in I(d) none of these

The straight line xcostheta+ysintheta=2 will touch the circle x^2+y^2-2x=0 ,if

Find the condition that the straight line x cos theta+ y sin theta =p may touch the parabola y^(2)= 4ax .

The line x + y tna theta = cos theta touches the circle x ^(2) + y ^(2) = 4 for

The line (x)/(a)cos theta-(y)/(b)sin theta=1 will touch the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 at point P whose eccentric angle is (A) theta(B)pi-theta(C)pi+theta(D)2 pi-theta

If p and p_1 be the lengths of the perpendiculars drawn from the origin upon the straight lines x sin theta + y cos theta = 1/2 a sin 2 theta and x cos theta - y sin theta = a cos 2 theta , prove that 4p^2 + p^2_1 = a^2 .

If the straight line represented by x cos alpha + y sin alpha = p intersect the circle x^2+y^2=a^2 at the points A and B , then show that the equation of the circle with AB as diameter is (x^2+y^2-a^2)-2p(xcos alpha+y sin alpha-p)=0