Home
Class 12
MATHS
For each tin R,let[t]be the greatest int...

For each t`in R`,let[t]be the greatest integer less than or equal to t. Then
`lim_(xto1^+) ((1-absx+sinabs(1-x))sin(pi/2[1-x]))/(abs(1-x)[1-x])`

Promotional Banner

Similar Questions

Explore conceptually related problems

For each t in RR, let [t] be the greatest integer less than or equal to t. Then, lim_(x rarr 1+) ((1-|x|+sin|1-x|)sin(pi/2[1-x]))/(|1-x|[1-x])

For each x in R , let [x]be the greatest integer less than or equal to x. Then lim_(xto1^+) (x([x]+absx)sin[x])/absx is equal to

For each x in R , let [x]be the greatest integer less than or equal to x. Then lim_(xto1^+) (x([x]+absx)sin[x])/absx is equal to

For each x in R , let [x]be the greatest integer less than or equal to x. Then lim_(xto1^+) (x([x]+absx)sin[x])/absx is equal to

For each tinR," let "[t] be the greatest integer less than or equal to t. Then lim_(xto0^(+)) x([(1)/(x)]+[(2)/(x)]+...+[(15)/(x)])

let [x] denote the greatest integer less than or equal to x. Then lim_(xto0) (tan(pisin^2x)+(abs(x)-sin(x[x]))^2)/x^2

let [x] denote the greatest integer less than or equal to x. Then lim_(xto0) (tan(pisin^2x)+(abs.x-sin(x[x]))^2)/x^2

let [x] denote the greatest integer less than or equal to x. Then lim_(xto0) (tan(pisin^2x)+(abs.x-sin(x[x]))^2)/x^2

Let [x] denote the greatest integer less than or equal to x . Then, int_(1)^(-1)[x]dx=?