Home
Class 14
MATHS
[" 28."[" 28."," affa "z!=0" (for "x" re...

[" 28."[" 28."," affa "z!=0" (for "x" reall "vec x" ,it "],[" (a) ",Re(z)=0rArr lm(z^(2))=0],[" (b) ",Re(z^(2))=0rArr lm(z^(2))=0],[" (c) "Re(z)=0rArr Re(z^(2))=0," (d) "(1)/(3)+4(1)/(y)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If z!=0 is a complex njmber,then prove that Re(z)=0rArr Im(z^(2))=0

The locus of point z satisfying Re (z^(2))=0 , is

The locus of point z satisfying Re (z^(2))=0 , is

Prove that Re (z_ (1) z_ (2)) = Re z_ (1) Rez_ (2) -Im z_ (1) Im z_ (2)

|z-4| (a) Re(z) > 0 (b) Re(z) (c) Re(z) > 3 (d) None of these

If z=((sqrt3)/(2)+(1)/(2)i)^5+((sqrt3)/(2)-(i)/(2))^5 , then (a) im(z)=0 (b) Re(z)gt0 , Im(z)gt0 (c) Re(z)gt0 , Im(z)lt0 (d) Re(z)=3

If z!=0 be a complex number and arg(z)=(pi)/(4), then Re(z)=Im(z) only Re(z)=Im(z)>0Re(z^(2))=Im(z^(2))(d) None of these

If |u|=|v|=1uv!=-1 and z=(u-v)/(1+uv) then (a) |z|=1( b) Re(z)=0 (c) Im(z)=0 (d) Re(z)=Im(z)

Solve the system of equation Re(z^(2))=0,|z|=2 .