Home
Class 6
MATHS
(dy)/(d)-(2y)/(d)=y^(4)...

(dy)/(d)-(2y)/(d)=y^(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

The differential equation representing the family of curves given by y=ae^(-3x)+b , where a and b are arbitrary constants, is a) (d^(2)y)/(dx^(2))+3(dy)/(dx)-2y=0 b) (d^(2)y)/(dx^(2))-3(dy)/(dx)=0 c) (d^(2)y)/(dx^(2))-3(dy)/(dx)-2y=0 d) (d^(2)y)/(dx^(2))+3(dy)/(dx)=0

The product of the degree and order of the D.E ((d^(2)y)/(dx^(2)))^(2)-((dy)/(dx))^(3)=y^(3) is

If y=f(x) is twice differentiable function such that at a point P,(dy)/(dx)=4,(d^2y)/(dx^2)=-3, then ((d^2x)/(dy^2))=

The order and degree of the differential equation (d^4y)/(dx^4)-4(d^3y)/(dx^3)+8(d^2y)/(dx^2)-8(dy)/(dx)+4y -=0 are respectively

The order of the differential equation (d^4y)/(dx^4)+((dy)/(dx))^3-y(d^2y)/(dx^2)=0 is

If x=logp and y=1/p ,then (a) (d^2y)/(dx^2)-2p=0 (b) (d^2y)/(dx^2)+y=0 (c) (d^2y)/(dx^2)+(dy)/(dx)=0 (d) (d^2y)/(dx^2)-(dy)/(dx)=0

If x=logp and y=1/p ,then (a) (d^2y)/(dx^2)-2p=0 (b) (d^2y)/(dx^2)+y=0 (c) (d^2y)/(dx^2)+(dy)/(dx)=0 (d) (d^2y)/(dx^2)-(dy)/(dx)=0

If x=logp and y=1/p ,then (a) (d^2y)/(dx^2)-2p=0 (b) (d^2y)/(dx^2)+y=0 (c) (d^2y)/(dx^2)+(dy)/(dx)=0 (d) (d^2y)/(dx^2)-(dy)/(dx)=0

If x=log pandy=(1)/(p), then (a) (d^(2)y)/(dx^(2))-2p=0 (b) (d^(2)y)/(dx^(2))+y=0 (c) (d^(2)y)/(dx^(2))+(dy)/(dx)=0( d) (d^(2)y)/(dx^(2))-(dy)/(dx)=0