Home
Class 11
MATHS
" If "f(x)=(sin(e^(x-2)-1))/(log(x-1))" ...

" If "f(x)=(sin(e^(x-2)-1))/(log(x-1))" ,then "lim_(x rarr2)f(x)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =(sin (e^(x-2)-))/(log(x-1)) then lim_(xrarr2)f(x) is given by

If f(x) = (sin (e^(x-2) - 1))/(log (x - 1)) , then lim_(x rarr 2) f(x) is given by :

let f(x)=(ln(x^(2)+e^(x)))/(ln(x^(4)+e^(2x))) then lim_(x rarr oo)f(x) is

If f(x)=int((2sin x-sin2x)/(x^(3))dx);x!=0 then lim_(x rarr0)f'(x) is: (A) 0(B)oo(C)-1 (D) 1

Evaluate: lim_(x rarr2)(sin(e^(x-2)-1))/(log(x-1))

If f(x)={(3x-1),x>=1,(2x+3),x =2} then lim_(x rarr2)f(g(x))=

If lim_(x rarr4)(f(x)-5)/(x-2)=1 then lim_(x rarr4)f(x)=

int(dx)/(x(x^(2)+1)^(3))=(1)/(4(f(x))^(2))+(1)/(2f(x))+(1)/(2)ln((x^(2))/(f(x)))+c then lim_(x rarr0)(f(x))^(1/x) is

If f(x) is the primitive of (sin x^((1)/(3))log(1+3x))/((tan^(-1)sqrt(x))^(2)(e^(x^((1)/(3)))-1))(x!=0) then lim_(x rarr0)f'(x) is