Home
Class 12
MATHS
If (a + ib)^5 +alpha+i beta then (b+ia)...

If `(a + ib)^5 +alpha+i beta` then `(b+ia)^5` is equal to (A) `beta - ialpha` (B) `beta +ialpha` (C) `alpha - ibeta` (D) ` -alpha - i beta`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a+i b)^(5)=alpha+i beta then (b+i a)^(5)=

alpha + beta = 5 , alpha beta= 6 .find alpha - beta

If A(alpha, beta) = [(cos alpha, sin alpha, 0),(- sin alpha, cos alpha, 0),(0,0,e^beta)] then A(alpha, beta)^(-1) is equal to a) A(-alpha, -beta) b) A(-alpha,beta) c) A(alpha, - beta) d) A(alpha, beta)

(i) sin (alpha + beta) = sin alpha cos beta + cos alpha sin beta) (ii) sin (alpha-beta)= sin alpha cos beta- cos alpha sin beta Proof

If A(alpha,beta)=[[cosalpha,sinalpha,0],[-sinalpha,cosalpha,0],[ 0, 0,e^(beta)]],t h e nA(alpha,beta)^(-1) is equal to a. A(-alpha,-beta) b. A(-alpha,beta) c. A(alpha,-beta) d. A(alpha,beta)

If A(alpha,beta)=[[cosalpha,sinalpha,0],[-sinalpha,cosalpha,0],[ 0, 0,e^(beta)]],t h e nA(alpha,beta)^(-1) is equal to a. A(-alpha,-beta) b. A(-alpha,beta) c. A(alpha,-beta) d. A(alpha,beta)

If alpha , beta are the roots of ax ^2 + bx +c=0 then alpha ^5 beta ^8 + alpha beta ^5=

If alpha, beta are real, what is |(alpha+ibeta)/(beta+ialpha)| equal to ?