Home
Class 11
MATHS
Prove the following identity: (sin^3A+co...

Prove the following identity: `(sin^3A+cos^3A)/(sinA+cosA)+(sin^3A-cos^3A)/(sinA-cosA)=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities: (sinA+cosA)/(sinA-cosA)+(sinA-cosA)/(sinA+cosA)=2/(sin^2A-cos^2A)=2/(2sin^2A-1)=2/(1-2cos^2A)

Prove that following identities (sin^(3)A+cos^(3))/(sinA+cosA)+(sin^(3)A-cos^(3)A)/(sinA-cosA)=2

Prove the following identity : (sin A-sin B)/(cosA+ cosB)+ (cosA-cosB)/(sinA+sinB)=0 .

Prove the following identities: (cosA)/(1-sinA)+(sinA)/(1-cosA)+1 = (sinAcosA)/((1-sinA)(1-cosA) ((1+cotA+tanA)(sinA-cosA)/(sec^3A-cos e c^3A)=sin^2Acos^2A

Prove the following identities: (cosA)/(1-tanA)+(sin^2A)/(sinA-cosA)=sinA+cosA

(sin3A)/(sinA)-(cos3A)/(cosA)=2

(sin3A)/(sinA)-(cos3A)/(cosA)=

Prove that (sinA+cosA)^3 = 3(sinA+cosA) - 2 (sin^3A+cos^3A)

Prove that: (cos^(3)A-cos3A)/(cosA)+(sin^(3)A+sin3A)/(sinA)=3

Prove that: (cos^(3)A-cos3A)/(cosA)+(sin^(3)A+sin3A)/(sinA)=3