Home
Class 12
MATHS
If 3 non zero vectors vec a,vec b,vec c...

If 3 non zero vectors `vec a,vec b,vec c` are such that `veca xx vec b = 2(vec a xx vecc), |vec a | = |vec c| = 1; |vec b| =4` the angle between `vec b and vec c` is `cos^-1 (1/4)`, then `vec b = rho c + mu vec a` where `|rho|+|mu|` is -

Promotional Banner

Similar Questions

Explore conceptually related problems

If 3 non zero vectors vec a,vec b,vec c are such that vec a xxvec b=2(vec a xxvec c),|vec a|=|vec c|=1;|vec b|=4 the angle between vec b and vec c is cos^(-1)((1)/(4)) then vec b=rho c+muvec a where | rho|+| mu| is -

If three vectors vec(a), vec(b), vec(c ) are such that vec(a) ne vec(0) and vec(a) xx vec(b)=2 (vec(a) xx vec(c )), |vec(a)| = |vec(c )| =1, |vec(b)|=4 and the angle between vec(b) and vec(c ) is cos^(-1) ((1)/(4)) , then vec(b)-2vec(c )= lamda vec(a) where lamda =

If the vectors vec a, vec b, vec c are coplanar then (vec a xx vec b)* vec c = (vec b xx vec c)*vec a =...........

vec b,vec c are unit vectors and |vec a|=7vec a xx(vec b xxvec c)+vec b xx(vec c xxvec a)=(1)/(2)vec a then the angle between vec a and vec a is

For any three vectors vec a, vec b , vec c , show that vec a xx (vec b + vec c) + vec b xx (vec c + vec a) + vec c xx (vec a + vec b) = 0

If vec(A) xx vec(B) = 0 and vec(B) xx vec(C ) = 0 , the angle between vec(A) and vec(C ) is :

If vec a, vec b, vec c are non coplanar vectors such that, vec b xx vec c = vec a, vec c xx vec a = vec b, vec a xx vec b = vec c , then |vec a + vec b + vec c| =

For any three vectors vec a, vec b, vec c, (vec a-vec b) * (vec b-vec c) xx (vec c-vec a) is equal to

For any three vectors vec a, vec b, vec c the expression (vec a - vec b) . [(vec b - vec c ) xx (vec c - vec a)] =

If vec a,vec b,vec c are vectors such that [vec a,vec b,vec c]=4 then [a xx b,b xx c,c xx a]=