Home
Class 12
MATHS
The integral int(1)^(e){((x)/(e))^(2x)-...

The integral `int_(1)^(e){((x)/(e))^(2x)-((e)/(x))^(x)} "log"_(e)x` dx is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int_(1)^(e){(x/e)^(2x)-(e/x)^x}log_exdx is equal to

The integral int_(1)^(e){(x/e)^(2x)-(e/x)^x}log_exdx is equal to

The integral int_(1)^(e){(x/e)^(2x)-(e/x)^x}log_exdx is equal to

int_(1)^(e)(e^(x)(x log_(e)x+1))/(x)dx is equal to

int e^(x log a) e^(x) dx is equal to

int e^(x log a ) e^(x) dx is equal to :

int(e^(x)(x log x+1))/(x)dx is equal to

Integrate : int (e^(x) dx)/(1-3e^(x)-3e^(2x))

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=