Home
Class 12
MATHS
If x=a(cost+1/2logtan^2t) and y=asint th...

If `x=a(cost+1/2logtan^2t)` and `y=asint` then find `(dy)/(dx)` at `t=pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a(cost+1/2logtan'(t)/(2) and y=asint then find (dy)/(dx) at t=pi/4

If x=a(cos t+(1)/(2)log tan^(2)t) and y=a sin t then find (dy)/(dx) at t=(pi)/(4)

If x=a(cost+tsint) and y=a(sint-tcost) , then find (d^(2)y)/(dx^(2)) at t=(pi)/(4) .

x=acost,y=asint . find dy/dx

If x=a(cost+logtant//2),y=asint, then (dy)/(dx)=

If x=a(cost+logtan(t/2)) , y=asint , evaluate (dy)/(dx) .

If y=acost,x=asint , then find (d^(2)y)/(dx^(2)) at t=pi/3 .

If x=sin t sqrt(cos2t) and y=cos tsqrt(sin2t) , find (dy)/(dx) at t=(pi)/(4) .