Home
Class 12
MATHS
The sequence a1, a2, a3,........ satis...

The sequence `a_1, a_2, a_3,........` satisfies `a_1=1,a_2=2 and a_(n+2)=2/a(n+1),n=1,2,3,.......`

Promotional Banner

Similar Questions

Explore conceptually related problems

A sequence of numbers a_0,a_1,a_2,a_3 , ........ satisfies the relation a_n^2-a_(n-1)a_(n+1)=(-1)^n . Find a_3 , given a_0=1 and a_1=3 .

Let the sequence a_1 , a_2 , a_3 ......... a_n form an A.P. then a_1^2 - a_2^2 + a_3^2 - a_4^2 +.....+ a_(2n-1)^2 - a_(2n)^2 is equal to:- (1) n/(2n-1)(a_1^2-a_(2n)^2) (2) (2n)/(n-1)(a_(2n)^2-a_1^2) (3) n/(n+1)(a_1^2+a_(2n)^2) (4)none of these

Let the sequence a_1 , a_2 , a_3 ......... a_n form an A.P. then a_1^2 - a_2^2 + a_3^2 - a_4^2 +.....+ a_(2n-1)^2 - a_(2n)^2 is equal to:- (1) n/(2n-1)(a_1^2-a_(2n)^2) (2) (2n)/(n-1)(a_(2n)^2-a_1^2) (3) n/(n+1)(a_1^2+a_(2n)^2) (4)none of these

If the sequence a_1, a_2, a_3,....... a_n ,dot forms an A.P., then prove that a_1^2-a_2^2+a_3^2-a_4^2+.......+ a_(2n-1)^2 - a_(2n)^2=n/(2n-1)(a_1^2-a_(2n)^2)

If the sequence a_1, a_2, a_3,....... a_n ,dot forms an A.P., then prove that a_1^2-a_2^2+a_3^2-a_4^2+.......+ a_(2n-1)^2 - a_(2n)^2=n/(2n-1)(a_1^2-a_(2n)^2)

If the sequence a_1, a_2, a_3,....... a_n ,dot forms an A.P., then prove that a_1^2-a_2^2+a_3^2-a_4^2+.......+ a_(2n-1)^2 - a_(2n)^2=n/(2n-1)(a_1^2-a_(2n)^2)

If the sequence a_1, a_2, a_3,....... a_n ,dot forms an A.P., then prove that a_1^2-a_2^2+a_3^2-a_4^2+.......+ a_(2n-1)^2 - a_(2n)^2=n/(2n-1)(a_1^2-a_(2n)^2)

A sequence of no. a_1,a_2,a_3 ..... satisfies the relation a_n=a_(n-1)+a_(n-2) for nge2 . Find a_4 if a_1=a_2=1 .