Home
Class 11
MATHS
alpha,beta and gamma are the roots of x...

`alpha,beta and gamma` are the roots of `x^3-3x^2 + 3x + 7 =0` then `sum ((alpha-1)/(beta-1))` is (where `omega` is a cube root of unity)

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the roots of x^(3) - 3x + 7 = 0 then alpha beta gamma =

If alpha , beta , gamma are the roots of 2x^3 -2x -1=0 the sum ( alpha beta)^2 =

If alpha,beta,gamma are the roots of x^(3)-2x^(2)+3x-4=0 then sum alpha beta(alpha+beta)=

If alpha ,beta, gamma are the roots of 2x^(3)-2x-1=0 then (sum alpha beta)^(2)

If alpha,beta,gamma are the roots of x^(3)-3x^(2)+4x-7=0, then (alpha+2)(beta+2)(gamma+2)=

If alpha, beta, gamma are the roots of x^(3) - 3x + 7 = 0 then alpha + beta + gamma =

If alpha , beta , gamma are the roots of x^3 +2x^2 -3x -1=0 then alpha^(-2) + beta^(-2) + gamma^(-2)=

if alpha,beta,gamma are the roots of x^3-3x^2 +3x + 7 =0 then (alpha-1)/(beta-1)+(beta-1)/(gamma-1)+(gamma-1)/(alpha-1)

if alpha,beta,gamma are the roots of x^3-3x^2 +3x + 7 =0 then (alpha-1)/(beta-1)+(beta-1)/(gamma-1)+(gamma-1)/(alpha-1)