Home
Class 14
MATHS
Fourth proportional to(a^2-b^2\ ),\ (...

Fourth proportional to`(a^2-b^2\ ),\ (a^2-a b),\ (a^3+b^3)` is `(a-b)` b. `a^4+b^4` c. `a(a^2-a b+b^2)` d. `a^3-a^2b^2+b^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Fourth proportional to (a^(2)-b^(2)backslash),backslash(a^(2)-ab),backslash(a^(3)+b^(3)) is (a-b) b.a^(4)+b^(4) c.a(a^(2)-ab+b^(2))da^(3)-a^(2)b^(2)+b^(2)

The product (a+b)(a-b)(a^2-a b+b^2)(a^2+a b+b^2) is equal to: (a) a^6+b^6 (b) a^6-b^6 (c) a^3-b^3 (d) a^3+b^3

a^2b^3\ X\ 2a b^2 is equal to: (a) 2a^3b^4 (b) 2a^3b^5 (c) 2a b (d) a^3b^5

Simplify: a^2b(a-b^2)+a b^2(4a b-2a^2)-a^3b(1-2b)

The factors of 8a^3+b^3-6a b+1 are (a) (2a+b-1)(4a^2+b^2+1-3a b-2a) (b) (2a-b+1)(4a^2+b^2-4a b+1-2a+b) (c) (2a+b+1)(4a^2+b^2+1-2a b-b-2a) (d) (2a-1+b)(4a^2+1-4a-b-2a b)

a^(2)b^(3)x2ab^(2) is equal to: 2a^(3)b^(4)(b)2a^(3)b^(5)(c)2ab (d) a^(3)b^(5)

Find the value of ( a^2/b^2 + b^2/a^2 ) is ( a ) ( a/b + b/a )^2 - 2 ( b ) ( a/b + b/a )^2 + 2 ( c ) ( a/b + b/a )^2 + 4 ( d ) ( a/b + b/a )^2 - 4