Home
Class 11
MATHS
If xepsilonR, the numbers (5^(1+x)+5^(1-...

If `xepsilonR`, the numbers `(5^(1+x)+5^(1-x), a/2, (25^x +25^-x)` form an `A.P.` then `a` must lie in the interval

Promotional Banner

Similar Questions

Explore conceptually related problems

If x in R, the numbers 5^(1+x)+5^(1-x),(a)/(2),25^(x)+25^(-x) form an A.P. then a must lie in the interval

If x in R , the number 5^(1+x)+5^(1-x),a/2,25^x+25^-x form an AP , then a must lie in the interval

If x ∈ R and the numbers (5 ^ (1−x) +5^ (x+1) , a/2, (25^ x +25^ −x )) form an A. P. then a must lie in the interval ............ .

If x in R , the numbers 2^(1+x)+2^(1-x), b//2,36^x+36^(-x) form an A.P., then b may lie in the interval [12 ,oo) b. [6,oo) c. (-oo,6] d. [6, 12]

If x in R, the numbers 2^(1+x)+2^(1-x),b/2,36^(x)+36^(-x) form an A.P. then b may lie in the interval [12,oo) b.[6,oo) c.(-oo,6] d.[6,12]

At what values of parameter a are there values of x such that the numbers: (5^(1+x)+5^(1-x)),(a)/(2),(25^(x)+25^(-x)) form an A.P.

If log_(1/3)((3x-1)/(x+2)) is less than unity, then 'x' must lie in the interval :

If 5^(1+x) + 5^(1-x) , ( a)/(2), 25^(x) + 25^(-x) are in A.P., then the set of values of a for such an A.P. to exists is :

If (log_((1)/(3)))(3x-1)/(x+2) is less than unity,then x must lie in the interval: