Home
Class 12
MATHS
The set of points where the function f(x...

The set of points where the function `f(x)=x|x|` is differentiable is `(-oo,oo)` (b) `(-oo,0)uu(0,oo)` `(0,oo)` (d) `[0,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The set of points where the function f(x)=x|x| is differentiable is (a)(-oo,oo) (b) (-oo,0)uu(0,oo)(c)(0,oo)(d)[0,oo]

The set of points where the function f(x)=x|x| is differentiable is (a) (-oo,\ oo) (b) (-oo,\ 0)uu(0,\ oo) (c) (0,\ oo) (d) [0,\ oo]

The function f(x)= (x)/(1+|x|) is differentiable on (A) (0 oo) 0 oo) (B) (-oo 0) (C) (D) all the above

The function f(x)=cot^(-1)x+x increases in the interval (a)(1,oo)(b)(-1,oo)(c)(-oo,oo)(d)(0,oo)

The function f(x)=cot^(-1)x+x increases in the interval (a) (1,\ oo) (b) (-1,\ oo) (c) (-oo,\ oo) (d) (0,\ oo)

The range of the function f(x)=|x-1| is A. (-oo,0) B. [0,oo) C. (0,oo) D. R

The range of the function f(x)=|x-1| is A. (-oo,0) B. [0,oo) C. (0,oo) D. R

The interval of increase of the function f(x)=x-e^(x)+tan(2 pi/7) is (a) (0,oo)(b)(-oo,0)(c)(1,oo)(d)(-oo,1)

The function f(x)=x^9+3x^7+64 is increasing on (a) R (b) (-oo,\ 0) (c) (0,\ oo) (d) R_0

The domain of definition of the function f(x)="log"|x| is R b. (-oo,0) c. (0,oo) d. R-{0}