Home
Class 10
MATHS
(x-1)(x+2)^2/(-1-x) < 0...

`(x-1)(x+2)^2/(-1-x)` < 0

Promotional Banner

Similar Questions

Explore conceptually related problems

(x-2)^(2),(x-1)^(2),x^(2)(x-1)^(2),x^(2),(x+1)^(2)x^(2),(x+1)^(2),(x+2)^(2)]|=-8

(x-2)^(2),(x-1)^(2),x^(2)(x-1)^(2),x^(2),(x+1)^(2)x^(2),(x+1)^(2),(x+2)^(2)]|=

The coefficient of x^49 in the expansion of (x-1)(x-1/2)(x-1/2^2)........(x-1/2^49) is equal to

Solve for x: (1)/(x-2)+(2)/(x-1)=(6)/(x) ,x ne 0,1,2

The value of (x-1)/(x+1)+(x^(2)-1)/(2(x+1)^(2))+(x^(3)-1)/(3(x+1)^(2))+......oo equals

The sum of the 10 terms of the series (x+(1)/(x))^(2)+(x^(2)+(1)/(x^(2)))^(2)+(x^(3)+(1)/(x^(3)))^(2)+

|[(x-2)^(2), (x-1)^(2), x^(2)], [(x-1)^(2), x^(2), (x+1)^(2)],[x^(2), (x+1)^(2), (x+2)^(2)]|+P^(3)=0 the value of P is

simplify (2x-(1)/(2x))^(2)-(2x+(1)/(2x))(2x-(1)/(2x))

(x+(1)/(x))^(2)-(x-(1)/(x))^(2)=? 1) x^(2)+(1)/(x^(2)) 2) 4 3) 2x^(2)+(1)/(2x^(2)) 4) 2x^(2)+4+(1)/(2x^(2))

The coefficient of x^(49) in the expansion of (x-1)(x-(1)/(2))(x-(1)/(2^(2)))......*(x+(1)/(2^(49))) is equal to