Home
Class 12
MATHS
A^(n)=[[3^(n-1),3^(n-1),3^(n-1)],[3^(n-1...

A^(n)=[[3^(n-1),3^(n-1),3^(n-1)],[3^(n-1),3^(n-1),3^(n-1)],[3^(n-1),3^(n-1),3^(n-1)]],n in N

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(1,1,1),(1,1,1),(1,1,1)] , prove that A^(n)=[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))],n inN

If A=[(1,1,1),(1,1,1),(1,1,1)] then show that A^n=[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))] .

if A={:[(1,1,1),(1,1,1),(1,1,1)]:}, prove by mathematical induction that, A^(n)={:[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))]:} for every positive integer n.

If A=[111111111], then prove that A^(n)=[3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)] for every positive integer n

If A=[(1 1 1),( 1 1 1),( 1 1 1)] , then prove that A^n=|(3^(n-1)3^(n-1)3^(n-1)),(3^(n-1)3^(n-1)3^(n-1)),(3^(n-1)3^(n-1)3^(n-1))| for every positive integer ndot

If A,=[[1,1,11,1,11,1,1]]A^(n)=,[[3^(n-1),1]]3^(n-1),3^(n-1),3^(n-1)3^(n-1),3^(n-1),3^(n-1)]]

(2.3^(n+1)+7.3^(n-1))/(3^(n+1)-2((1)/(3))^(1-n))=

Simplify: (3^(n+1))/(3^(n(n-1)))-:(9^(n+1))/((3^(n+1))^((n-1)))

The sum of the series (2)/(3)+(8)/(9)+(26)/(27)+(80)/(81)+ to n terms is n-(1)/(2)(3^(-n)-1)(b)n-(1)/(2)(1-3^(-n))(c)n+(1)/(2)(3^(n)-1)(d)n-(1)/(2)(3^(n)-1)

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is