Home
Class 12
MATHS
d (1+x? +x) TF 2 = ax+b, then (a, b) = 1...

d (1+x? +x) TF 2 = ax+b, then (a, b) = 1) (-1, 2) 2) (-2, 1) 3) (2, -1)

Promotional Banner

Similar Questions

Explore conceptually related problems

If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

d/(dx)((1+x^2+x^4)/(1+x+x^2))=ax+b , then (a,b)=

If A=[[1,-12,-1]],B=[[x,1y,-1]] and A^(2)+B^(2)=(A+B)^(2) then (x,y)=,(A)(1,4)(B)(2,1)(C)(3,3)(D)(4,1)

If f(x)={(ax^2+b ,0lex<1),(4,x=1),(x+3,1ltxge2)) then the value of (a ,b) for which f(x) cannot be continuous at x=1, is (a) (2,2) (b) (3,1) (c) (4,0) (d) (5,2)

int(x^3)/(sqrt(1+x^2))\ dx=a(1+x^2)^(3setminus2)+bsqrt(1+x^2)+C , then (a) a=1/3,\ \ b=1 (b) a=-1/3,\ \ b=1 (c) a=-1/3,\ \ b=-1 (d) a=1/3,\ \ b=-1

If the derivative of the function f(x) is every where continuous and is given by f(x)={{:(bx^(2)+ax+4,,, x ge 1), (ax^(2)+b, ,, x lt -1):}, then : a)a = 2, b = -3 b)a = 3, b = 2 c)a = -2, b = -3 d)a = -3, b= -2

If x-2 is a factor of x^(2)+3ax-2a, then a=2( b) -2( c) 1 (d) -1

Let X=[{:(x_(1)),(x_(2)),(x_(3)):}],A=[{:(1,-1,2),(2,0,1),(3,2,1):}] and B=[{:(3),(1),(4):}] .If AX=B, then X is equal to: a) [(1),(2),(3)] b) [(-1),(2),(3)] c) [(-1),(-2),(3)] d) [(-1),(-2),(-3)]

Let f(x)={(1/(|x|), for |x| ge 1),(ax^2+b,for |x| < 1)) . If f(x) is continuous and differentiable at any point, then (A) a=1/2, b=-3/2 (B) a=-1/2, b=3/2 (C) a=1,b=-1 (D) none of these

Let f(x)={(1/(|x|), for |x| ge 1),(ax^2+b,for |x| < 1)) . If f(x) is continuous and differentiable at any point, then (A) a=1/2, b=-3/2 (B) a=-1/2, b=3/2 (C) a=1,b=-1 (D) none of these