Home
Class 11
MATHS
If |z^3+1/z^3| leq 2 then |z+1/z| can...

If `|z^3+1/z^3| leq 2` then `|z+1/z|` cannot exceed

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z^(3)+(1)/(z^(3))|<=2 then |z+(1)/(z)| cannot exceed

If |z| = 1, z ne 1 , then value of arg ((1)/(1-z)) cannot exceed

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

Let z_(1), z_(2), z_(3) be three complex numbers such that |z_(1)| = |z_(2)| = |z_(3)| = 1 and z = (z_(1) + z_(2) + z_(3))((1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))) , then |z| cannot exceed

If |z+4| leq 3 then the maximum value of |z+1| is

If Re(z)<0 then the value of (1+z+z^2+.....+z^n) cannot exceed