Home
Class 11
MATHS
Show that cos^2(pi/4-x)+cos^2(pi/4+x)=1...

Show that `cos^2(pi/4-x)+cos^2(pi/4+x)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos((pi)/(4)-x)cos((pi)/(4)+x)=(1)/(2)-sin^(2)x

Prove that: cos(pi/4+x)+cos(pi/4-x)=sqrt(2)\ cos x

Prove that cos ( pi/4 +x)+cos ( pi/4 - x) = sqrt(2)cos x

Using application of trignometric formulas prove that (i)cos(pi/4+x)+cos(pi/4-x)=sqrt2cos x(i1)sin(7pi/12)cos(pi/4)-cos(7pi/12)sin(pi/4)

Prove that: cos((pi)/(4)+x)+cos((pi)/(4)-x)=sqrt(2)cos x

Prove that: cos((pi)/(4)+x)+cos((pi)/(4)-x)=sqrt(2)cos x

Show that cos ^(2) x+cos ^(2)(x+(pi)/(3))+cos ^(2) (x-(pi)/(3))=(3)/(2)

Show that cos((2pi)/7)+cos((4pi)/7)+cos((6pi)/7)=-1/2

Prove that cos ((pi)/(4) + x) + cos ((pi)/(4) -x) = sqrt2 cos x

Prove that cos ((pi)/(4) + x) + cos ((pi)/(4) -x) = sqrt2 cos x