Home
Class 11
MATHS
If y=m1x+c and y=m2x+c are two tangent...

If `y=m_1x+c` and `y=m_2x+c` are two tangents to the parabola `y^2+4a(x+a)=0` , then (a)`m_1+m_2=0` (b) `1+m_1+m_2=0` (c)`m_1m_2-1=0` (d) `1+m_1m_2=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=m_1x+c and y=m_2x+c are two tangents to the parabola y^2+4a(x+c)=0 , then

If y=m_(1)x+c and y=m_(2)x+c are two tangents to the parabola y^(2)+4a(x+a)=0 then (a)m_(1)+m_(2)=0(b)1+m_(1)+m_(2)=0 (c) m_(1)m_(2)-1=0 (d) 1+m_(1)m_(2)=0

If y=m_1x+c and y=m_2x+c are two tangents to the parabola y^2+4a(x+c)=0 , then m_1+m_2=0 (b) 1+m_1+m_2=0 m_1m_2-1=0 (d) 1+m_1m_2=0

If y+3=m_1(x+2) and y+3=m_2(x+2) are two tangents to the parabola y^2=8x , then (a) m_1+m_2=0 (b) m_1.m_2=-1 (c) m_1+m_2=1 (d) none of these

If y+3=m_1(x+2) and y+3=m_2(x+2) are two tangents to the parabola y_2=8x , then (a)m_1+m_2=0 (b) m_1+m_2=-1 (c)m_1+m_2=1 (d) none of these

If y+3=m_1(x+2) and y+3=m_2(x+2) are two tangents to the parabola y_2=8x , then (a) m_1+m_2=0 (b) m_1+m_2=-1 (c) m_1+m_2=1 (d) none of these

If y+b=m_1(x+a)& y+b=m_2(x+a) are two tangents to the parabola y^2=4ax then |m_1m_2| is equal to:

l f y+b= m_(1) (x+ a) and y+b= m_(2) (x+a) are two tangents to y^(2) = 4ax , then show that m_(1)m_(2) = -1.

The line y=mx+1 is a tangent to the parabola y^2 = 4x if (A) m=1 (B) m=2 (C) m=4 (D) m=3

The line y=mx+1 is a tangent to the parabola y^2 = 4x if (A) m=1 (B) m=2 (C) m=4 (D) m=3