Home
Class 12
MATHS
The integral int[-1/2]^[1/2]([x]+log([1+...

The integral `int_[-1/2]^[1/2]([x]+log([1+x]/[1-x])).dx` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int_( -1//2)^(1//2) {[x]+ in ((1+x)/(1-x))} dx equals

The integral int_(-1//2)^(1//2) ([x] + l_n ((1 + x)/(1 - x)))dx equals :

The value of the integral int_(-1//2)^(1//2) cos x log((1+x)/(1-x))dx , is

The value of the integral int_(-1//2)^(1//2) cos x log((1+x)/(1-x))dx , is

The value of definite integral I=int_(-1/2)^(1/2)sin^(2)x log((1-x)/(1+x))dx is

The value of definite integral I=int_(-1/2)^(1/2)sin^(2)x log((1-x)/(1+x))dx is

int_(-1//2)^(1//2)(cosx)[log((1-x)/(1+x))]dx is equal to