Home
Class 11
MATHS
L1=(a-b)x+(b-c)y+(c-a)=0L2=(b-c)x+(c-a)y...

`L_1=(a-b)x+(b-c)y+(c-a)=0L_2=(b-c)x+(c-a)y+(a-b)=0L_3=(c-a)x+(a-b)y+(b-c)=0` KAMPLE 6 Show that the following lines are concurrent L1 = (a-b) x + (b-c)y + (c-a) = 0 12 = (b-c)x + (c-a) y + (a-b) = 0 L3 = (c-a)x + (a-b) y + (b-c) = 0. ,

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the following lines are concurrent: L_1=(a-b)x+(b-c)y+(c-a)=0 L_2=(b-c)x+(c-a)y+(a-b)=0 L_3=(c-a)x+(a-b)y+(b-c)=0

Show that the following lines are concurrent: L_(1)=(a-b)x+(b-c)y+(c-a)=0L_(2)=(b-c)x+(c-a)y+(a-b)=0L_(3)=(c-a)x+(a-b)y+(b-c)=0

Show that the following system is inconsistent. (a-b)x+(b-c)y+(c-a)z=0 (b-c)x+(c-a)y+(a-b)z=0 (c-a)x+(a-b)y+(b-c)z=1

If x/(b + c -a) = y/(c + a - b) = z/(a + b -c) , then show that (b -c) x + (c-a) y + (a -b) z = 0 .

Prove that the lines (b-c)x+(c-a)y+(a-b)=0, (c-a)x+(a-b)y+(b-c)=0 and (a-b)x+(b-c)y+(c-a)=0 are concurrent.

Show that the straight lines (a-b)x+(b-c)y=c-a,(b-c)x+(c-a)y=a-b and (c-a)x+(a-b)y=b-c are concurrent.

If x=b-c+a, y=c-a+b, z=a-b+c , then prove that (b-a) x + (c-b)y +(a-c)z=0