Home
Class 11
MATHS
The positive integer n for which 2xx2^2...

The positive integer `n` for which `2xx2^2+3xx2^3+4xx2^4+......+nxx2^n=2^(n+10)` is a.`510` b. `511` c. `512` d. `513`

Promotional Banner

Similar Questions

Explore conceptually related problems

The positive integer n for which 2xx2^2xx+3xx2^3+4xx2^4++nxx2^n=2^(n+10) is 510 b. 511 c. 512 d. 513

The positive integer n for which 2xx2^2xx+3xx2^3+4xx2^4++nxx2^n=2^(n+10) is 510 b. 511 c. 512 d. 513

Find the value of n, given : (2xx4^(3)xx2^(n-4)xx3xx2^(n+2))/(3^(3)xx2^(16))=(2)/(9)

The statement P(n) (1xx1!) + (2 xx2!) + (3 xx 3!) + … …. + (nxx n!) = (n+1)! - 1 is

Simplify (16xx2^(n+1)-4xx2^n)/(16xx2^(n+2)-2xx2^(n+2))

Simiplify : (16xx2^(n+1)-4xx2^(n))/(16xx2^(n+2)-2xx2^(n+1))

Simiplify : (16xx2^(n+1)-4xx2^(n))/(16xx2^(n+2)-2xx2^(n+1))

Prove that 1^(1)xx2^(2)xx3^(3)xx xx n^(n)<=[(2n+1)/3]^(n(n+1)/2),n in N