Home
Class 8
MATHS
[a^-1-b^-1]/[a^-2-b^-2] is equal to:...

`[a^-1-b^-1]/[a^-2-b^-2]` is equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(2) (a + b) (a ^(2) + b ^(2) ) +(1)/(2) (a - b) (a ^(2) - b ^(2)) is equal to

The value of the determinant |{:(1+ a^(2) - b^(2),2 ab , - 2b),(2ab, 1 - a^(2) + b^(2), 2a),(2b , -2a , 1-a^(2) - b^(2)):}| is equal to

The value of the determinant |(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a,1-a^(2)-b^(2))| is equal to

If sin A=a cos B and cosA=b sinB then, (a^2 - 1) tan^2 A+(1 -b^2)tan^2B is equal to

If sin A=a cos B and cosA=b sinB then, (a^2 - 1) tan^2 A+(1 -b^2)tan^2B is equal to

If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equal to

If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equal to

If sin A=a cos B and cos A=b sin B then (a^(2)-1)tan^(2)A+(1-b^(2))tan^(2)B is equal to