Home
Class 11
MATHS
The least positive integer n for which t...

The least positive integer n for which `tan (107n)^0=(cos96^0+sin96^0)/(cos96^0-sin96^0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha be the smallest integral value of x, x>0 such that tan 19x=(cos96^0+sin96^0)/(cos96^0-sin96^0) . The last digit of alpha is

Find the least positive x in degree for which tanx=(cos5^0cos20^0+cos35^0cos50^0-sin5^0sin20^0-sin35^0sin50^0)/(sin5^0cos20^0-sin35^0cos50^0+cos5^0sin20^0-cos35^0sin50^0)

Find the least positive value of x in degrees for which tanx=(cos5^0cos20^0+cos35^0cos50^0-sin5^0sin20^0-sin35^0sin50^0)/(sin5^0cos20^0-sin35^0cos50^0+cos5^0sin20^0-cos35^0sin50^0)

Let alpha be the smallest integral value of x>0 such that tan19x=(cos96^(@)+sin96^(@))/(cos96^(@)-sin96^(@)). The last digit of alpha is

Find the least positive value of x such that 96=(x)/(7) (mod 5)

Prove that (cos10^0+sin10^0)/(cos10^0-sin 10^0)=tan55^0

Prove that (cos10^0+sin10^0)/(cos10^0-sin 10^0)=tan55^0

Prove that (cos10^0+sin10^0)/(cos10^0-sin 10^0)=tan55^0