Home
Class 11
MATHS
If i z^3+z^2-z+i=0 , where i=sqrt(-1) , ...

If `i z^3+z^2-z+i=0` , where `i=sqrt(-1)` , then `|z|` is equal to 1 (b) `1/2` (c) `1/4` (d) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If iz^(3)+z^(2)-z+i=0, where i=sqrt(-1) then |z| is equal to 1 (b) (1)/(2)(c)(1)/(4) (d) None of these

If iz^(3)+z^(2)-z+i=0 , where i= sqrt-1 then |z| is equal to

If z=i^(i) where i=sqrt(-)1 then |z| is equal to

If z=i^(i^(i)) where i=sqrt-1 then |z| is equal to

If z=i^(i^(i)) where i=sqrt-1 then |z| is equal to

If z=(i) ^((i) ^(i)) where i= sqrt (−1) ​ , then z is equal to

If z=(i)^(i)^(i) where i=sqrt(-1),t h e n|z| is equal to 1 b. e^(-pi//2) c. e^(-pi) d. none of these

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to