Home
Class 11
MATHS
the value of sum i^(2n+1 !)...

the value of `sum i^(2n+1 !)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(2n)sin^(-1)x_(i)=n pi then find the value of sum_(i=1)^(2n)x_(i)

If sum_(i=1)^(2n)cos^(-1)x_(i)=0 then find the value of sum_(i=1)^(2n)x_(i)

If sum_(i=1)^(2n)cos^(-1)x_i=0 then find the value of sum_(i=1)^(2n)x_i

If sum_(i=1)^(2n) sin^-1x_i = npi then find the value of sum_(i = 1)^(2n) x_i

IF i^(2) =-1, then the value of sum _(i-1) ^(200) i^(n) is-

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

If sum_(i)^(n)cos theta_(i)=n, then the value of sum_(i=1)^(n)sin theta_(i)