Home
Class 11
MATHS
cos^(-1)\ (x^2-1)/(x^2+1)+sin^(- 1)\ (2x...

`cos^(-1)\ (x^2-1)/(x^2+1)+sin^(- 1)\ (2x)/(x^2+1)+tan^(- 1)\ (2x)/(x^2-1)=(2pi)/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: 3 "sin"^(-1) (2x)/(1+x^2) -4"cos"^(-1) (1-x^2)/(1+x^2) +2 "tan"^(-1) (2x)/(1-x^2) = pi/3

If tan^(- 1)((2x)/(x^2-1))+cos^(- 1){(x^2-1)/(x^2+1)}=(2pi)/3 then x=

5cos^(-1)((1-x^(2))/(1+x^(2)))+7sin^(-1)((2x)/(1+x^(2)))-4tan^(-1)((2x)/(1-x^(2)))-tan^(-1)x=5pi , then x is equal to

5cos^(-1)((1-x^(2))/(1+x^(2)))+7sin^(-1)((2x)/(1+x^(2)))-4tan^(-1)((2x)/(1-x^(2)))-tan^(-1)x=5pi , then x is equal to

Solve for x:cos^(-1)((x^(2)-1)/(x^(2)+1))+(1)/(2)tan^(-1)((2x)/(1-x^(2)))=(2(pi)/(3))

Solve 3sin^(-1)((2x)/(1+x^2))-4cos^(-1)((1-x^2)/(1+x^2))+2tan^(-1)((2x)/(1-x^2))=pi/3

If 1/2tan^(- 1)((2x)/(x^2-1))+cos^(- 1)((x^2-1)/(x^2+1))=(2pi)/3 then x=

Solve the following equation for x : 3sin^(-1)(2x)/(1+x^2)-4cos^(-1)(1-x^2)/(1+x^2)+2tan^(-1)(2x)/(1-x^2)=pi/3

Solve the following equation for x : 3sin^(-1)(2x)/(1+x^2)-4cos^(-1)(1-x^2)/(1+x^2)+2tan^(-1)(2x)/(1-x^2)=pi/3