Home
Class 11
MATHS
The number of ordered pair(s) (x. y) sat...

The number of ordered pair(s) (x. y) satisfying the equations` sinx.cosy =1` and `x^2+y^2leq9pi^2` is/are

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of ordered pair(s) (x .y) satisfying the equationssin x*cos y=1 and x^(2)+y^(2)<=9 pi^(2) is/are

If x, y in [0, 2 pi] , then the total number of ordered pairs (x, y) satisfying the equation sinx cos y = 1 is

If x, y in [0,2pi] then find the total number of order pair (x,y) satisfying the equation sinx .cos y = 1

If x, y in [0,2pi] then find the total number of order pair (x,y) satisfying the equation sinx .cos y = 1

If x, y in [0,2pi] then find the total number of order pair (x,y) satisfying the equation sinx .cos y = 1

If x, y in [0,2pi] then find the total number of order pair (x,y) satisfying the equation sinx .cos y = 1

The number of ordered pairs of integers (x,y) satisfying the equation x ^2+6x+y^2 =4 is

The number of ordered pair (x, y) satisfying the equation sin^(2) (x+y)+cos^(2) (x-y)=1 which lie on the circle x^(2)+y^(2)=pi^(2) is _________.