Home
Class 11
MATHS
Prove that: 1+cos^2 2theta=2(cos^4theta+...

Prove that: `1+cos^2 2theta=2(cos^4theta+sin^4theta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 1+cos^(2)2 theta=2(cos^(4)theta+sin^(4)theta)

Prove that 2cos^(2)theta-cos^(4)theta+sin^(4)theta=1

Prove that-: cos^4theta/(1-sin^4theta)=(1-sin^2theta)/(1+sin^2theta)

Prove that : cos^(4)theta - cos^(2)theta = sin^(4)theta - sin^(2) theta

Prove that : cos^(4)theta - cos^(2)theta = sin^(4)theta - sin^(2) theta

Prove that : cos^3 2theta+3cos2theta=4(cos^6theta-sin^6 theta)

Prove that sin^4theta-cos^4theta=sin^2theta-cos^2theta .

Prove that (sin^(4)theta-cos^(4)theta)/(sin^(2)theta-cos^(2)theta)=1

Prove that (3 + cos 4theta) cos 2theta = 4(cos^(8)theta - sin^(8)theta) .

Prove that : (cos 4theta + cos 3theta + cos 2theta)/(sin 4theta + sin 3theta + sin 2theta) = cot 3theta