Home
Class 12
MATHS
If cos^(-1)x+cos^(-1)y+cos^(-1)=pi, prov...

If `cos^(-1)x+cos^(-1)y+cos^(-1)=pi`, prove that `x^2+y^2+z^2+2x y z=1.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^2+y^2+z^2+2x y z=1.

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^2+y^2+z^2+2x y z=1.

If cos^(-1)x+cos^(-1)y+cos^(-1)=pi, prove that x^(2)+y^(2)+z^(2)+2xyz=1

If cos^(-1)x+cos^(-1)y+cos^(-1)=pi,p rov et h a tx^2+y^2+z^2+2x y z=1.

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^(2)+y^(2)+z^(2)+2xyz=1

cos^(-1)x+cos^(-1)y+cos^(-1)z=pi ,then prove that, x^2+y^2+z^2+xyz=1

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi then

if cos^(-1)x+cos ^(-1)y+cos^(-1) z=pi prove that x^(2) +y^(2)+z^(2) +2xyz=1

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then