Home
Class 12
MATHS
int0^pi(xsin2xsin(pi/2cosx))/(2x-pi)dx i...

`int_0^pi(xsin2xsin(pi/2cosx))/(2x-pi)dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_0^pi(xsin2xsin(pi/2cosx))/(2x-pi)dx

Evaluate: int_0^pi(xsin2xsin(pi/2cosx))/(2x-pi)dx

Evaluate: int_0^pi(xsin2xsin(pi/2cosx))/(2x-pi)dx

Evaluate : int_0^pi(x^2sin2x*sin(pi/2*cosx))/(2x-pi)dx

Evaluate : int_0^pi(x^2sin2x*sin(pi/2*cosx))/(2x-pi)dx

Evaluate: int_0^pi(xsin2xsin(pi/2cosx)/(2x-pi)dx

Evaluate: int_0^pixsin2xsin(pi/2cosx)/(2x-pi)dx

int_(0)^(pi)(x.sin2x.sin[(pi//2)cosx])/(2x-pi)dx=

The value of int_(-pi/2)^(pi/2) (x^2cosx)/(1+e^x) dx is equal to

int(x^(2))/((xsin x+cosx)^(2))dx is equal to