Home
Class 12
MATHS
Prove that [(veca xx vecp, vecb xx vecq,...

Prove that `[(veca xx vecp, vecb xx vecq, vecc xx vecr)]+[(veca xx vecq, vecb xx vecr, vecc xx vecp)]+[(veca xx vecr, vecb xx vecp, vecc xx vecq)]=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (veca xx vecb) *(vecc xx vecd) +(vecb xx vecc) *(veca xx vecd) +(vecc xx veca) *(vecb xx vecd)=0 .

Prove that veca xx (vecb xx vecc) + vecb xx (vecc xx veca) + vecc xx (veca xx vecb) = vec0 and hence prove that veca xx (vecb xx vecc), vecb xx (vecc xx veca), vecc xx (veca xx vecb) are coplanar.

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

For any four vectors veca, vecb, vecc, vecd the expressions (vecb xx vecc).(veca xx vecd) +(vecc xx veca).(vecb xx vecd)+(veca xx vecb).(vecc xx vecd) is always equal to: