Home
Class 10
MATHS
[" If if "x=a cos^(3)theta" and "y=b sin...

[" If if "x=a cos^(3)theta" and "y=b sin^(3)theta" ,prove that: "],[((x)/(a))^(3)+((y)/(b))^((2)/(3))=1]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=acos^(3)theta and y = bsin^(3)theta , prove that ((x)/(a))^(2//3)+((y)/(b))^(2//3)=1.

If x=a cos^(3)theta,y=b sin^(3)theta, then

If x = a cos ^(3) theta and y = b sin ^(3) theta , then the value of ((x)/(a))^(2//3) + ((y)/(b))^(2//3)

If x = a cos^3 theta, y = b sin^3 theta , then

x=a cos^(3)theta,y=b sin^(3)theta : ((x)/(a))^(2/3)+((y)/(b))^(2/3)=1

If x=a^(2) cos3 theta and y=b^(2)sin3 theta , then

Find the blanks. (i) If x=a cos^(3)theta,y=b sin^(3)theta then ((x)/(a))^(2/3)+((y)/(b))^(2/3)=ul(P) (ii) if x=a sec theta cos phi,y=b sec theta sin phi and z=c tan theta then (x^(2))/(a^(2))+(y^(2))/(b^(2))-(z^(2))/(c^(2))=ul(Q) (iii) If cos A+cos^(2)A=1 ,then sin^(2)A+sin^(4)A=ul(R)

Eliminate theta,if x=a cos^3 theta y=b sin^3 theta

Eliminate theta , x=a cos^3theta , y=b sin^3theta

If x=a sin theta and y=b cos theta , then prove : (x^(2))/(a^(2))+(y^(2))/(b^(2))=1