Home
Class 12
MATHS
l=((cot^(2)x*cos^(2)x)/(cot^(2)x-cos^(2)...

l=((cot^(2)x*cos^(2)x)/(cot^(2)x-cos^(2)x))^(2)" and "m=a^(log_(sqrt(3)))[-2cos(y)/(2)]," at "y=4 pi" ,then "not(1)/(2)+m^(2)" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

l=((cot^(2)x*cos^(2)x)/(cot^(2)x-cos^(2)x))^(2) and m=a^(log_(sqrt(a))[2cos((y)/(2))]) at y=4 pi then l^(2)+m^(2) is equal to

f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-cos^(2)x

f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-cos^(2)x

l=((cot^2x.cos^2x)/(cot^2x-cos^2x))^2 and m=a^(log_(sqrt(a))[2cos(y/2)] at y=4pi then l^2+m^2 is equal to

If cot^(-1)x-"cos"^(-1)(y)/(2)=alpha , then 4x^(2)-4xy cos alpha+y^(2) is equal to :

(cos(pi-x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^(2)x

(cos(pi-x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^(2)x

If 2y=(cot^(-1)((sqrt3 cos x + sin x)/(cos x - sqrt3 sin x)))^(2) , x in (0, pi/2) " then " (dy)/(dx) is equal to

If 2y=(cot^(-1)((sqrt3 cos x + sin x)/(cos x - sqrt3 sin x)))^(2) , x in (0, pi/2) " then " (dy)/(dx) is equal to

If cosec^2x-cot^2y=1 then cos(x-y)=