Home
Class 14
MATHS
" 8.5"quad 4/9(log x)/(y-z)=(log y)/(z-x...

" 8.5"quad 4/9(log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y)vec varepsilon" ,"x^(x)*y^(y)*z^(z)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y), thena ^(x)b^(y)c^(z) is

If (log x)/(y-z)=(logy)/(z-x) =(logz)/(x-y) , then prove that: x^x y^y z^z=1

If (log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) the value of a^(y+z)*b^(z+x)*c^(x+y) is

If (log x)/(y-z) = (log y)/(z-x) = (log z)/(x-y) , then prove that xyz = 1 .

If (log_(e)x)/(y-z)=(log_(e)y)/(z-x)=(log_(e)z)/(x-y), prove that xyz=1

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

If (loga)/(y+z)=(log b)/(z+x)=(log c)/(x+y) show that (b/c )^(x)(c /a)^(y)(a/b)^z=1

If ("log"x)/(y - z) = ("log" y)/(z - x) = ("log" z)/(x - y) , then prove that xyz = 1.

log a/(y-z)=log b/(z-x)=logc/(x-y), then a^xb^yc^z is equal to