Home
Class 7
MATHS
{[log(e)(log(e)x)=dx],[x,log(e)x]...

{[log_(e)(log_(e)x)=dx],[x,log_(e)x]

Promotional Banner

Similar Questions

Explore conceptually related problems

I=int(log_(e)(log_(e)x))/(x(log_(e)x))dx

int e^(log_(e)x)dx

y =[ log_(x) (log _(e) x ) ](log _(e) x ) then (dy)/(dx) equals

int(e^(exlog_(e)x)+(log_(e)x)(e^(exlog_(e)x)))dx=...+c

Draw the graph of y=log_(e)(-x),-log_(e)x,y=|log_(e)x|,y=log_(e)|x| and y=|log_(e)|x|| transforming the graph of y=log_(e)x.

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

(d)/(dx)log_(7)(log_(7)x)= (a) (1)/(x log_(e)x) (b) (log_(e)7)/(x log_(e)x) (c) (log_(7)e)/(x log_(e)x) (d) (log_(7)e)/(x log_(7)x)