Home
Class 12
MATHS
tan^(-1)2x+tan^(-1)3x=(pi)/(4)...

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x:tan^(-1)3x+tan^(-1)2x=(pi)/(4)

Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

Solve for x when tan^(-1)2x+tan^(-1)3x=n pi+(3 pi)/(4)

Solve for x, "tan"^(-1)3x+"tan"^(-1)2x=pi/(4) .

If x_1, x_2, x_3 and x_4 are the roots of the equations x^4-x^3sin2beta+x^2cos2beta-xcosbeta-sinbeta=0, prove that tan^(-1)x_1+tan^(-1)x_2+tan^(-1)x_3+tan^(-1)x_4=(pi/2)-beta .

If x_1, x_2, x_3 and x_4 are the roots of the equations x^4-x^3sin2beta+x^2cos2beta-xcosbeta-sinbeta=0, prove that tan^(-1)x_1+tan^(-1)x_2+tan^(-1)x_3+tan^(-1)x_4=(pi/2)-beta .