Home
Class 8
MATHS
[" 24.The integral "int(3x^(13)+2x^(11))...

[" 24.The integral "int(3x^(13)+2x^(11))/((2x^(4)+3x^(2)+1)^(4))dx" is equal to "],[" (where "C" is a constant of integration) "],[[" (1) "(x^(4))/(6(2x^(4)+3x^(2)+1)^(3))+C_((2))(x^(2))/((2x^(4)+3x^(2)+1)^(3))+C," to "22],[" (3) "(x^(2))/(6(2x^(4)+3x^(2)+1)^(3))+C(4)(x^(4))/((2x^(4)+3x^(2)+1)^(3))+C," (3) "1]],[" The exange "]

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to (here C is a constant of intergration)

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to (here C is a constant of intergration)

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to: (Here C is a constant of integration)

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to : (Here C is a constant of integration)

int(x^(4)+3x^(3)+x^(2)-1)/(x^(3)+x^(2)-x-1)dx

int(3x^(13)-+2x^(11))/((4x^(4)+3x^(2)+1)^(4))dx is equal to (A)(x^(12))/((4x^(4)+3x^(2)+1)^(4))+C(B)(2)/(3(4x^(4)+3x^(2)+1)^(3))+C(C)(x^(12))/(3(4x^(-4)+3x^(2)+1)^(4))(D)(x^(6))/(6(4x^(-4)+3x^(-2)+1)^(3))+C

If "int(x^(1/3))/((1+x^(2/3))^(3))dx=(3)/(4)(x^(a))/((1+x^(2/3))^(2))+c ," then "a=

The integral int(3x^(13) + 2x^(11))/((2x^(4) + 3x^(2) +1)^(4))dx is equal to (x^(12))/(k(2x^(4) + 3x^(2) + 1)^3)+C . The value of (k) is _________. (where C is a constant of integration)

If int(dx)/(x^(2)(x^(4)+1)^(3//4))=A((x^(4)+1)/(x^(4)))^(B)+c, then

Let int(x^(2)-1)/(x^(3)sqrt(3x^(4)+2x^(2)-1))dx=f(x)+c where f(1)=-1 and c is the constant of integration.