Home
Class 11
MATHS
If y=1 x/(1!)+x^2/(2!)+x^3/(3!)+......, ...

If `y=1 x/(1!)+x^2/(2!)+x^3/(3!)+......,` then `(dy)/(dx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)+ , show that (dy)/(dx)=ydot

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+, is (dy)/(dx)=y+1 b.y-1 c.y d.y^(2)

If y = 1 + x/(1!)+x^(2)/(2!)+x^(3)/(3!)+...., show that dy/dx = y .

If y = 1 +(x)/(|__1) +(x^2)/(|__2) +(x^3)/(|__3) + ..........oo then (dy)/(dx) = …………. .

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+, show that (dy)/(dx)=y

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+ . . .+(x^(n))/(n!) , prove that (dy)/(dx)+(x^(n))/(n!)=y

If y = (1)/( (x^(2) +3)) , then (dy)/(dx) =

If y=3x^(3)sin^(-1)x+(x^(2)+2)sqrt(1-x^(2)), then (dy)/(dx)=

If y=x+(x^(3))/(3)+(x^(5))/(5)+…oo , show that (dy)/(dx)=(1)/(1-x^(2)) .

If y=2x^((3)/(2))(x^((1)/(2))+2)(x^((1)/(2))-1) then (dy)/(dx) is