Home
Class 10
MATHS
4tan^(-1)(1)/(5)-tan^(-1)(1)/(239)=(pi)/...

4tan^(-1)(1)/(5)-tan^(-1)(1)/(239)=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: 4\ tan^(-1)(1/5)-tan^(-1)(1/(239))=pi/4

Find the value of 4tan^(-1)((1)/(5))-tan^(-1)((1)/(239))

Prove that tan^(-1)((1)/(2))+tan^(-1)((1)/(5))+tan^(-1)((1)/(8))=(pi)/(4)

Prove that : tan^(-1)((1)/(2))+tan^(-1)((1)/(5))+tan^(-1)((1)/(8))=(pi)/(4)

Prove that tan^(-1)""(1)/(2)+tan^(-1)""(1)/(5)+tan^(-1)""(1)/(8)=(pi)/(4)

Prove that tan^(-1)""(3)/(4)+tan^(-1)""(3)/(5)-tan^(-1)""(8)/(19)=(pi)/(4)

Prove: 4 tan^(-1) (1/5 )- tan^(-1)( 1/239) = pi/4

4 tan ^(-1 )""(1)/(5) - tan ^(-1)""(1)/(239)=(pi)/(4)

Prove that "tan"^(-1)(1)/(5) +"tan"^(-1)(1)/(7) +"tan"^(-1)(1)/(3) +"tan"^(-1)(1)/(8) =(pi)/(4) .