Home
Class 12
MATHS
What is the value of |(1-i, omega^2,-ome...

What is the value of `|(1-i, omega^2,-omega), (omega^2+i,omega,-i), (1-2i-omega^2,omega^2-omega,i-omega)|,` where `omega` is the cube root of unity?

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega,omega)| where omega is cube root of unity.

Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega, omega)| where omega is cube root of unity.

If omega is a cube root of unity, then |(1-i,omega^2, -omega),(omega^2+i, omega, -i),(1-2i-omega^2, omega^2-omega,i-omega)| =

Evaluate |(1, omega, omega^(2)),(omega, omega^(2),1),(omega^(2),1,omega)| , where omega is a cube root of unity.

|{:(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega):}|=0 where omega is an imaginary cube root of unity.

Evalute: |{:(1,omega^3,omega^2),(omega^3,1,omega),(omega^2,omega,1):}| , where omega is an imaginary cube root of unity .

If omega is a cube root of unity, then |(1-i,omega^2, -omega),(omega^2+i, omega, -i),(1-2i-omega^2, omega^2-omega,i-omega)|= (A) -1 (B) i (C) omega (D) 0

find the value of |[1,1,1],[1,omega^(2),omega],[1,omega,omega^(2)]| where omega is a cube root of unity