Home
Class 11
MATHS
(x)=int(1+2cos x)/((cos x+2)^(2))dx" and...

(x)=int(1+2cos x)/((cos x+2)^(2))dx" and "g(0)=0." Then the value of "g(3 pi/2)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x)=int(1+2cos x)/((cos x+2)^(2))dx and g(0)=0. then the value of 8g((pi)/(2)) is

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

int_(0)^((pi)/(2))(1+2cos x)/((2+cos x)^(2))dx

int_(0)^( pi)(sin x)/(1+cos^(2)x)dx =

If f(x)=int(sin2x(cos2x-cos4x))/(cos2x(cos2x+cos4x))dx then the value of f((pi)/(3))-f(0) is

I=int_(0)^((pi)/(2))(2cos x+3)/((cos x+3)^(2))dx

I=int_(0)^(2 pi)cos^(-1)(cos x)dx

If f(x)=sin x+cos x and g(x)={(|x|)/(x)x!=0,2,x=0 then the value of int_(-(pi)/(4))^(2 pi)gof(x)dx is equal to