Home
Class 12
MATHS
tan^(-1)1+tan^(-1)2+tan^(-1)3...

tan^(-1)1+tan^(-1)2+tan^(-1)3

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)3-tan^(-1)2=tan^(-1)(1/7)

tan^(-1)3-tan^(-1)2=tan^(-1)(1/7)

Let |{:(tan^(-1)x, tan^(-1)2x, tan^(-1)3x), (tan^(-1)3x, tan^(-1)x, tan^(-1)2x), (tan^(-1)2x, tan^(-1)3x, tan^(-1)x):}|=0 , then the number of values of x satisfying the equation is

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

tan^(-1)2-tan^(-1)1=tan^(-1)(1)/(3)

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

tan^(-1)2-tan^(-1)1=tan^(-1)((1)/(3))

The numerical value of tan^(-1) 1+ tan^(-1) (1/2) + tan^(-1) (1/3) =_______.

Prove that 2(tan^(-1)1/4+tan^(-1)2/9)=tan^(-1)4/3 .