Home
Class 12
MATHS
" If "y=a^((1)/(1-log(a)x)),z=a^((1)/(1-...

" If "y=a^((1)/(1-log_(a)x)),z=a^((1)/(1-log_(a)y))," then the value of "a^((1)/(1-log_(a)z))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = a^(1/(1-log_(a)x)) and z = a^(1/(1-log_(a)y)) , then show that x = a^(1/(1-log_(a)z))

If y = a^(1/(1-log_(a) x)) and z = a^(1/(1-log_(a)y))",then prove that "x=a^(1/(1-log_(a)z))

If y = a^(1/(1-log_(a) x)) and z = a^(1/(1-log_(a)y))",then prove that "x=a^(1/(1-log_(a)z))

If y = a^(1/(1-log_(a) x)) and z = a^(1/(1-log_(a)y))",then prove that "x=a^(1/(1-log_(a)z))

If y = a^(1/(1-log_(a) x)) and z = a^(1/(1-log_(a)y))",then prove that "x=a^(1/(1-log_(a)z))

If y = a^((1)/( 1 - log_(a)x)) , z = a^((1)/(1 - log_(a)y)) , then x will be

If y=a^(((1)/(1-log_(a)x)))" and "z=a^(((1)/(1-log_(a)y))) , then x is equal to

If y=10^((1)/(1-log_(10)x)) and z=10^((1)/(1-log_(10)y)) show that x=10^((1)/(1-log_(10)z))

If y=a^(1/(1-(log)_a x)) and z=a^(1/(1-(log)_a y)),then prove that x=a^(1/(1-(log)_a z))