Home
Class 12
MATHS
[" If origin is the orthocentre of a tri...

[" If origin is the orthocentre of a triangle "],[" formed by the points "(cos alpha,sin alpha,0)],[(cos beta,sin beta,0),(cos gamma,sin gamma,0)" then "],[sum cos(2 alpha-beta-gamma)=],[[" 1) "0," 27"," 3) "2," 4) "3]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If origin is the orthocentre of a triangle formed bythe points (cos alpha, sin alpha,0), (cos beta, sin beta,0), (cos gamma, sin gamma,0) then sumcos(2alpha-beta-gamma)= -

If origin is the orthocenter of a triangle formed by the points (cos alpha*sin alpha,0)*(cos beta,sin beta.0),(cos gamma,sin gamma,0) then sum cos(2 alpha-beta-gamma)=

The orthocentre of triangle formed by (a cos alpha,a sin alpha),(a cos beta,a sin beta),(a cos gamma,a sin gamma) is

If (0,0) is orthocentre of triangle formed by A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then /_BAC is

If (0,0) is orthocentre of triangle formed by A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then /_BAC=

If origin is the orthocentre of the triangle with vertices A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then cos(2 alpha-beta-gamma)+cos(2 beta-gamma-alpha)+cos(2 gamma-alpha-beta)=

Delta ABC has vertices A(a cos alpha,a sin alpha),B(a cos beta,a sin beta) and C(a cos gamma,a sin gamma) then its orthocentre is

If ("Cos"alpha, "Sin"alpha,0),(cos beta, sin beta,0), (cos gamma, sin gamma, 0) are vertices of a triangle then circum radius R is